Gelpermeationschromatographie (GPC)

Mit GPC werden unerwünschte, meist hochmolekulare Begleitstoffe, von den gesuchten Analyten abgetrennt.
Ein vollautomatisiertes GPC-Cleanup erzeugt injektionsbereite Extrakte für GC-MS/MS und LC-MS/MS aus einer Probenaufarbeitung.

Gelpermeationschromatografie (GPC)

Die Gelpermeationschromatografie ist ein leistungsfähiges Separationsverfahren, welches u. a. zur Probenvorbereitung und Extraktaufreinigung innerhalb unterschiedlicher analytischer Gesamtverfahren eingesetzt werden kann. Insbesondere bei der modularen Analytik von Pflanzenschutzmitteln aus Lebensmittelmatrizes gemäß ASU L00.0034 hat sich die GPC als Bestandteil der Extraktaufreinigung bewährt.

Hierbei ist sie in der Leistungsfähigkeit, gemessen am ausblendbaren Matrixanteil, anderen Aufreinigungsverfahren, wie zum Beispiel der ASU L00.00113 und ASU L00.00115, überlegen. Daraus resultiert eine im Vergleich höhere Gesamtextraktmenge im Endvolumen, aus dem vielfach für zahlreiche Analyten bei gleichartiger Detektion niedrigere Bestimmungsgrenzen gegenüber vergleichbaren Extraktionsverfahren folgen können. Zudem ergibt sich eine signifikante Entlastung der nachfolgenden chromatografischen Systeme (GC-MS/MS und/oder LC-MS/MS), woraus ein verringerter Aufwand für Wartungen resultiert, was eine indirekte Zeit- und Kostenersparnis bedeutet.

Funktionsweise Gelpermeationschromatografie

Die traditionelle GPC-Glassäule hat ein Gelbett, das aus porösen, kreuzvernetzten Polystyren-Kügelchen besteht und vom Lösungsmittelsystem (oft Cyclohexan:Ethylacetat) mit einer Flussrate von 5 ml pro Minute von unten nach oben durchflossen wird. Niedrigmolekulare Wirkstoffe werden im Gelbett verlangsamt, indem sie in die Polystyrenstrukturen eindringen. Die hochmolekularen Begleitstoffe wandern um die Polystyrenkugeln und kommen schneller am oberen Säulenende an. Dort werden sie über ein automatisches Ventil in den Abfall geleitet. Die anschließend ankommenden, langsameren Wirkstoffe werden entweder zum AccuVap Modul geleitet, um dort sofort mit einer Verdampfungsgeschwindigkeit von 5 ml pro Minute verdampft zu werden, oder in Rundkolben auf dem Probentisch gesammelt.
Der große Vorteil des GPC-Verfahrens liegt, neben der Sauberkeit der Eluate darin, dass praktisch alle vorkommenden Wirkstoffe in einer Fraktion von ca. 100 bis 250 ml enthalten sind, so dass diese durch eine einzige Probenaufarbeitung gesammelt werden können.

GPC Modul

Die Probenvorbereitungsplattform PrepLinc kann mit einem Modul für die Gelpermationschromatographie ausgestattet werden.

  • GPC-Kalibrierreports, erstellt mit den internen Detektordaten, ermöglichen die laufende Überprüfung des Trennverhaltens der GPC-Säule. Die ermittelten Retentionszeiten werden in die Methoden übernommen.
  • Erweitung mit dem AccuVap Modul und SPE Modulen möglich.
  • Exakte Einstellung der Parameter für die Abarbeitung der Probe und der Spülschritte mit dem Methodeneditor.
  • Automatische Verdünnung vor der Probeninjektion - bei Bedarf.
  • Automatisierte Zugabe von internen Standards vor Probeninjektion möglich.
  • Wahl unterschiedlicher Flussraten
  • Benutzerdefinierte Spülschritte
  • Multiple Injektionen von einem Probenglas auf die GPC Säule
  • Überführung der Sammelphase (Collect) direkt auf die SPE Kartusche.
  • Überführung der Sammelphase (Collect) direkt in die Verdampfungskammer der AccuVap.

GPC Säulen

An das System können Niederdrucksäulen nach §64 LFGB (DFG S19), Mitteldruck- und Hochdrucksäulen angeschlossen und betrieben werden. 
Der Säulendruckwächter pausiert die Hochdruckpumpe, wenn ein Überdruck an der Säule vorliegt, um Beschädigungen an der GPC Säule oder am System zu verhindern. Der Überdruck kann für jede Säule individuell eingestellt werden. Der Säulendruckwächter kann zudem so eingestellt werden, dass die Hochdruckpumpe auch bei Unterschreitung eines Mindestdrucks (Leckage) pausiert wird.

GPC-Säulenwechselventil (Option)
Das PrepLinc-System kann mit einem 4-Säulenwechselventil ausgestattet werden. Dies ermöglicht innerhalb einer Probensequenz bis zu drei unterschiedliche GPC- oder andere preparative Säulen anzusteuern und zu verwenden.
Außerdem kann ein Lösemittelwechselventil angeschlossen werden, um das PrepLinc System mit unterschiedlichen Laufmitteln zu verwenden.

Säulenwechselventil für die Verwendung von bis zu vier unterschiedlichen Säulen am GPC-Modul

3column-select-valve

Teile-Nr.: PL3820X-00, 4-Säulen-Wechselventil für PrepLinc

UV-Detektoren

Es stehen zwei UV-Detektoren zum Anschluss zur Verfügung: UV-Detektor mit fester Wellenlänge (254nm) sowie ein UV-Detektor mit variabler Wellenlänge. Die ermittelten Retentionszeiten aus den GPC-Säulenreports können direkt in die Methoden übernommen werden.

Zur Festlegung der Retentionszeiten der GPC sowie zur Überprüfung der Retentionszeiten verfügt das GPC-Modul über Anschlussmöglichkeiten für UV-Detektoren:

Beispielchromatrogramm

Zur Kontrolle der Trennleistung der GPC Säule kann der UV Detektor ebenfalls eingesetzt werden:

Überprüfung der Trennleistung der GPC Säule mittels UV-Detektor und Standard

Trennleistung der GPC-Säule in Ordnung:

Säulenbett-in-Ordnung-DFG-S19

 

 

 

 

 

 

 

 

 

 

 

 

Die Trennleistung der GPC Säule ist mangelhaft, das Säulenbett muss erneuert werden:

Defektes-Säulenbett-DFG-S19

 

 

 

 

 

 

 

 

 

 

 

 

 

Elution
Üblicherweise wird mit GPC nur eine Fraktion, die alle Wirkstoffe enthält, gesammelt. Das Ansteuerungsprogramm erlaubt jedoch auch die Aufteilung in eine beliebige Anzahl von Fraktionen, nur limitiert durch die Anzahl der zur Verfügung stehenden Sammelpositionen (>140 möglich).
Bei Verwendung des AccuVap Moduls wird die Probe während der Collect-Phase Inline zum Verdampfungsmodul geleitet und eingeengt. Die Probe kann während der Collect-Phase auch Inline zum SPE-Modul oder zum Filtrationsmodul geleitet werden.

Probentische
Es stehen unterschiedliche Probentische zur Auswahl.
Wird die PrepLinc nur mit GPC betrieben, so werden in der Regel Probentische eingesetzt, in die 250 ml Rundkolben mit NS 29/32 eingehängt werden. Diese können anschließend ohne Umfüllarbeiten direkt im Rotationsverdampfer weiter verwendet werden.

Konfigurationsbeispiel PrepLinc GPC Only
Für eine PrepLinc Plattform, bei der ausschließlich das GPC-Modul eingesetzt wird, bietet sich folgende Konfiguration an:

Uni-Bern-PrepLinc-GPC

Tray-GPC-Rundkolben-10ml-Probenaufgabe


Rack RK1335 (36 Positionen, 10 ml Probengläser)

Racks RK1413 (je 6 Positionen für 250 ml Rundkolben);
in der Abbildung sind vier Probentische RK1413 gezeigt für insgesamt 24 Rundkolben.

Probenaufgabe

Die Proben werden in 10 ml-Probengläschen, die mit Einmalsepten verschlossen sind, vorgelegt. Die Probenaufgabe erfolgt durch eine automatische, hochpräzise Spritze aus verschlossenen Probengläschen in eine kalibrierte Probenschleife oder alternativ über einen Injektionsport am Ventil.
Das PrepLinc Programm ermöglicht ein partielles Probenladen, so dass in Fällen, in denen entweder sehr wenig Probenmaterial zur Verfügung steht, oder in denen die erwartete Wirkstoffkonzentration sehr niedrig ist, die gesamte Probenmenge verlustfrei auf die Säule gebracht wird.

Loop Overfill Injection / Direct Injection

Smart Tracking
Die Probennadel des Autosamplers kann so gesteuert werden, dass sie knapp unterhalb der sinkenden Oberfläche nachgeführt wird (Smart Tracking™), um die Aufnahme von Sedimenten möglichst zu vermeiden sowie die Kontamination der Probennadel zu minimieren.

Smart Tracking
probe_tracking

Elution

Üblicherweise wird mit GPC nur eine Fraktion, die alle Wirkstoffe enthält, gesammelt. Das Ansteuerungsprogramm erlaubt jedoch auch die Aufteilung in eine beliebige Anzahl von Fraktionen, nur limitiert durch die Anzahl der zur Verfügung stehenden Sammelpositionen (>140 möglich).
Bei Verwendung des AccuVap Moduls wird die Probe während der Collect-Phase Inline zum Verdampfungsmodul geleitet und eingeengt. Die Probe kann während der Collect-Phase auch Inline zum SPE-Modul oder zum Filtrationsmodul geleitet werden.

Probentische
Es stehen unterschiedliche Probentische zur Auswahl.
Wird die PrepLinc nur mit GPC betrieben, so werden in der Regel Probentische eingesetzt, in die 250 ml Rundkolben mit NS 29/32 eingehängt werden. Diese können anschließend ohne Umfüllarbeiten direkt im Rotationsverdampfer weiter verwendet werden.

Konfigurationsbeispiel PrepLinc GPC Only
Für eine PrepLinc Plattform, bei der ausschließlich das GPC-Modul eingesetzt wird, bietet sich folgende Konfiguration an:

Uni-Bern-PrepLinc-GPC

Tray-GPC-Rundkolben-10ml-Probenaufgabe


Rack RK1335 (36 Positionen, 10 ml Probengläser)

Racks RK1413 (je 6 Positionen für 250 ml Rundkolben);
in der Abbildung sind vier Probentische RK1413 gezeigt für insgesamt 24 Rundkolben.

Hochdruckpumpe

Das GPC-Modul ist mit einer Hochdruckpumpe ausgerüstet, die bei einer Flussrate zwischen 1 bis 10ml bis zu 170 bar Gegendruck erzeugt. Somit können damit, neben der meist verwendeten Niederdruckglassäule nach der DFG S19-Methode mit einem Gegendruck von etwa 0,4 bar, auch Mitteldrucksäulen bis 170 bar eingesetzt werden. Eine Sonderausführung der Hochdruckpumpe bis 375 bar Gegendruck ist optional erhältlich.

Modulare Erweiterungen

Downloads

Anwendungsdatenblätter

Bestimmung von polycyclischen aromatischen Kohlenwasserstoffen (PAKs) in Fetten und Ölen mittels 2D-GPC

Veröffentlichung von Melanie Lehneke, Intertek Food Services in der Deutschen Lebensmittel Rundschau
Bestimmung von leichten und schweren polycyclischen aromatischen Kohlenwasserstoffen (PAKs) in Fetten und Ölen pflanzlicher und tierischer Herkunft mittels automatisierter 2D-GPC und anschließender GC-MS-Detektion
Polycyclische aromatische Kohlenwasserstoffe (PAKs) sind Verbindungen, die bei unvollständigen Verbrennungsprozessen oder Pyrolyse organischer Ausgangsmaterialien (z. B. Holzkohle, Öl) gebildet werden. Sie bestehen aus mindestens zwei kondensierten aromatischen Ringsystemen. Da die Bildungsprozesse unspezifisch verlaufen, tauchen PAKs in vielen verschiedenen Formen auf.

Bitte fordern Sie bei Interesse das Anwendungsdatenblatt bei ANTEC GmbH an.

Automatisierte Probenvorbereitung für die Bestimmung von Pestizidrückständen in hocheffizienten Laboratorien

Veröffentlichung von Ralf Godeck, GfL Berlin in der Deutschen Lebensmittel Rundschau

Automatisierte Probenvorbereitung für die Bestimmung von Pestizidrückständen in hocheffizienten Laboratorien mit GPC-GC-MS/MS und -LC-MS/MS"
Die Gelpermeationschromatografie (GPC) ist ein leistungsfähiges Separationsverfahren, welches u. a. zur Probenvorbereitung und Extraktaufreinigung innerhalb unterschiedlicher analytischer Gesamtverfahren eingesetzt werden kann. Insbesondere bei der modularen Analytik von Pflanzenschutzmitteln aus Lebensmittelmatrizes gemäß ASU L00.0034 hat sich die GPC als Bestandteil der Extraktaufreinigung bewährt.

Bitte fordern Sie bei Interesse das Anwendungsdatenblatt bei ANTEC GmbH an.

Automatisierung der Baustein GPC, C1 und C2 der Methode L00.00-34 mit automatisierter GPC-SPE und AccuVap Modul

Anwendungsdatenblatt 75
Die Methode L00.00-34, Untersuchung von Lebensmitteln, Modulare Multimethode zur Bestimmung von Pflanzenschutzrückständen in Lebensmitteln (Erweiterte Neufassung der DFG-Methode S 19), Bausteine C1 (GPC) und C2 (SPE) wird mit der Probenvorbereitungsplattform PrepLinc vollständig automatisiert.
Die Extraktlösung aus einem der Bausteine E (L00.00-34) wird in einem 10 ml Glas in den Probengeber eingestellt. Die an das PrepLinc System angeschlossene GPC-Säule wird vor dem ersten Probelauf mit Cyclohexan:Ethylacetat 1:1 equilibriert. Das SPM-Modul wird mit einer Kieselgelsäule bestückt. Als Auffanggefäße für die Elutionen 0 bis 5 (Baustein C1) bzw. Elutionen 1 bis 5 (Baustein C2) werden GC vials in den Tray eingestellt. Über den Sequenz-Editor wird die Linc-Methode L00.00-34-GPC-SPE geladen und die Ein- und Ausgabevials bestimmt. Anschließend wird das Gerät gestartet, die Probe wird vollautomatisch gereinigt, eingeengt und nach einem Lösemittelaustausch in GC Vials abgefüllt.

Bitte fordern Sie bei Interesse das Anwendungsdatenblatt bei ANTEC GmbH an.

Decreasing the Cost of GPC Cleanup of Extracts for Trace Pesticide Analysis

Anwendungsdatenblatt 105
Gel Permeation Chromatography is a size-exclusion liquid chromatography method used to remove lipids, sulfur and other co-extractives from environmental and food matrices prior to analytical analysis. It is a desirable technique because it is non-destructive and separates based on molecular size.
GPC Cleanup, while a beneficial cleanup technique, has been criticized for its solvent and time investments. GPC Cleanup using the traditional glass column requires one hour per sample and about 300mL of mobile phase solvent. Additionally, the traditional mobile phase is methylene chloride (DCM), a chlorinated solvent that requires expensive disposal.
To significantly decrease the cost of GPC Cleanup, the run time must be shortened. Simply increasing the mobile phase flow rate may speed the processing time, but will not decrease the amount of solvent used. It will also create pressure problems with the column. Another way to increase sample throughput while decreasing solvent consumption is to decrease the bed volume of the column. The lower bed volume will decrease the run time, thus decreasing the amount of solvent used to process each sample. There are, however, drawbacks to decreasing column bed length in some situations.

Bitte fordern Sie bei Interesse das Anwendungsdatenblatt bei ANTEC GmbH an.

Keeping the Nations Beef Supply Safe from Chronic Levels of Chlorinated Pesticides and Flame Retardants

Anwendungsdatenblatt 110

The USDA FSIS National Residue Program mandates the testing of domestic meat to prevent violative levels of persistent pollutants like chlorinated pesticides from entering the food supply. Recent findings have prompted an interest in flame retardant levels in meat. Flame retardant compounds, like hexabromobiphenyl, are commonly found in flame retardants and enter the animal by ingestion of retardant-treated items. Little is known of the toxicity of fire retardant compounds in humans, but research in rodents suggests they are associated with cancer, endocrine disruption and brain impairment. Like chlorinated pesticides, fire retardant compounds are highly lipophilic and tend to accumulate in fatty tissue of animals in the food chain.
The standard method for determining chlorinated pesticide residue levels in meat employs GPC Cleanup with GC/ECD detection. In this study the flame retardant compound hexabromobiphenyl was simultaneously determined with a standard list of 20 chlorinated pesticides. Advances in GPC Cleanup column technology allows for a decrease in run time, keeping the entire procedure, extraction through analysis, close to 1 hour per sample.

Bitte fordern Sie bei Interesse das Anwendungsdatenblatt bei ANTEC GmbH an.

Comparison of different methods of purification of environmental samples for analysis of polycyclic aromatic hydrocarbons

Anwendungsdatenblatt 132

Currently, 12 substances are regulated by the Stockholm Convention on Persistent Organic Pollutants (POPs) signed in May 2001 by 127 countries, and the work on finding new candidate chemicals to the convention has started. One group of substances in focus is polycyclic aromatic hydrocarbons (PAHs). They are formed during all types of incomplete combustion of organic matter, and they exhibit the characteristic POPs properties: persistence, bio-accumulation, adverse effects and potential for long-range environmental transportation to a certain extent. Many of the PAHs are carcinogenic, they are also believed to exhibit reproductive effects, as well as immune system inhibiting properties, genotoxicity and mutagenicity.
The development of innovative analytical methods for determination of PAHs has been and is of fundamental importance, due to the high carcinogenicity of these compounds. The quali-quantitative analysis of PAHs is an important challenge due to the low concentration at which these hydrocarbons may be present.

Bitte fordern Sie bei Interesse das Anwendungsdatenblatt bei ANTEC GmbH an.

Automated cleaning of dietary supplements for pesticide resudies using GPC-SPE-Evaporation

Anwendungsdatenblatt 131

The use of Dietary Supplements by consumers has grown from <10% of the population to ~50% of the population over 10 years (US). Ginseng, one of the most popular botanical supplements, is a root crop requiring 4-7 years to mature. The long growing period increase the risk of fungal and insect attack. Numerous chlorinated pesticides, namely PCNB (Quintozene) and Tricyclazole are frequently found in ginseng samples. FDA & private laboratory testing revealed major contamination problems in the 1990’s which still persist today making residue monitoring a high priority. While many supplements can be routinely tested using modern techniques (QuEChERS), many chlorinated residues and high-lipid/saponin matrices can create challenges for this modern technique. Florisil column clean up (SPE) and Gel Permeation Chromatography (GPC) are utilized for such matrices. Historical GPC involved significant time and resources from the analyst to collect fractions, evaporate them and perform various solvent exchanges & SPE. Using the new-generation PrepLinc™ system, these functions are fully automated creating a ready-to-inject sample in an autosampler vial making GPC viable again for production laboratories. This poster (the first in a series) will introduce the system and briefly outline the methods utilized for sample preparation & provide matrix examples. Future posters/papers will provide further detail on the project.

Bitte fordern Sie bei Interesse das Anwendungsdatenblatt bei ANTEC GmbH an.

Combined GPC and On-Line Carbon Cleanup Technique for Isotopic Dilution High Resolution PCDD/PCDF Methods

Anwendungsdatenblatt 120
Extract purification for pico- or nanogram scale GC/MS is time consuming, laborious and costly, and may suffer from performance variations in manual cleanup chromatography. Size exclusion (GPC) followed by adsorptive chromatography is useful for cleanup of biota, soil and sediment extracts for high resolution PCDD/PCDF analyses. GPC cleanup of extracts is allowed or encouraged in several EPA methods and is of great value to laboratories practicing such analyses. Sample extract cleanup for PCDD./PCDF always involve a carbon column stage. Sample concentrate, typically after other cleanups, is passed onto carbon and forward elution drives out various interferences. Reverse elution utilizes solvent containing a component (e.g. toluene) having great affinity for carbon. This disgorges PCDD/PCDF congeners into an eluate ready for evaporation and analysis.
In this study GPC eluate was forward eluted through a carbon cartridge (bed of powder mixed with granular substrate, packed between two frits) placed in line after the GPC column. During forward elution, target compounds collect at or near the column head while interferences are flushed forward. Valve switching enables reverse elution with toluene for collection of targets. Thus PCDD/PCDF sample cleanup can be conducted in highly automated fashion with minimal operator contact.

Bitte fordern Sie bei Interesse das Anwendungsdatenblatt bei ANTEC GmbH an.

Determination of Haloacetic Acids in Aquueous Environments by Solid Phase Extraction

Anwendungsdatenblatt 30
Chlorination of drinking water has been a commonly practiced method of disinfection for over a century. However, the disinfection by-products arising from the reaction of organic material in the water and chlorine may give rise to certain aberrant carcinogenic effects. EPA Method 552.1 and 552.3 prescribe procedures for testing of haloacid constituents in drinking water by ion-exchange or micro extraction, followed by esterification and quantitation by GC-ECD.
In this study, the 552.1 ion-exchange method is automated for different water samples to afford increased reproducibility, unattended operation, and consistency of sample loading and elution.

Bitte fordern Sie bei Interesse das Anwendungsdatenblatt bei ANTEC GmbH an.

Weitere Literatur- und Anwendungsdatenblätter unserer Anwender
Folgende Literatur- und Anwendungsdatenblätter unserer Anwender zeigen die vielseitigen Einsatzmöglichkeiten der vollautomatisierten Probenaufarbeitung:

  • Bestimmung von leichten und schweren polycyclischen aromatischen Kohlenwasserstoffen (PAKs) in Fetten und Ölen pflanzlicher und tierischer Herkunft mittels automatisierter 2D-GPC und anschließender GC-MS-Detektion
  • Automatisierte Probenvorbereitung für die Bestimmung von Pestizidrückständen in hocheffizienten Laboratorien mit GPC-GC-MS/MS und -LC-MS/MS
  • Maximierte Probenaufgabe mit zweidimensionaler Gelpermeationschromatografie (2D-GPC)
  • Automatisierung der Bausteine GPC, C1 und C2 der Methode L 00.00-34
  • Maximizing Lipid Load With 2-Dimensional GPC Cleanup
  • QuEChERS, SPE and GPC: A Comparison of Sample Preparation Techniques for Analysis of Pesticides in Problematic Matrices
  • Automated GPC with Inline SPE to Improve Sample Cleanup Without Adding Time or Solvent
  • Additional cleanup for DIN EN 12393 minimising matrix effects and improving result quality in GC-MS
  • A Combined SPE Method for Analysis of Chloroacetic Acids in Drinking Water
  • Cleanup-Methode für Nahrungsergänzungsmittel wie z.B. Ginseng
  • Modifizierte Cleanup-Methode für Dioxine und persistente organische Schadstoffe (POPs)
  • Automatisierung der Wasserextraktion mit dem SPE-Wasserextraktionssystem LVi
  • Traditionelles Dioxin-Cleanup mit dem PrepLinc System
  • Wiederauffindungsraten unterschiedlicher Pflanzenschutzmittel mit GPC und AccuVap
  • Erfahrungen zur Automatisierung des GPC-Reinigungsver fahrens bei der Untersuchung von tierischen Lebensmitteln auf Chlorkohlenwasserstoffe
  • Der Einsatz der automatischen Gelchromatographie zur Reinigung von Pesticidextrakten Organochlor
  • Pflanzenbehandlungsmittel in Tabak und Tabakerzeugnissen
  • Bestimmung der Fungizide Bitertanol, Fuberidazol, Imazalil, Rabenzazole, Triadimefon und Triadimenol in Pflanzen und Boden
  • Methode zur Aufarbeitung von Lebensmitteln und Futtermitteln pflanzlicher und tierischer Herkunft für die Multirückstandsbestimmung lipoid- und wasserlöslicher Pflanzenbehandlungsmittel
  • Zur Analytik von Chlorkohlenwasserstoffen in Zwiebeln nach Reinigung mit der Gelpermeationschromatographie
  • Schnelle Untersuchung von Milch auf chlorierte Kohlenwasserstoffe mittels automatischer Gelchromatographie
  • Automatisierte Gelchromatographie als Reinigungsverfahren zum Nachweis von ECD-erfaßbaren Wirkstoffen, chlorierten Kohlenwasserstoffen, Pentachlorphenol sowie von Diphenyl und o-Phenylphenol in pflanzlichen Materialien
  • Untersuchungen zum Einsatz der Gelpermeationschromatograpie in der Rückstandsanalytik
  • Nachweis von Aflatoxin B1 in Futtermitteln für Milchtiere
  • Bestimmung der Rückstände von aromatischen Dinitroverbindungen mittels gelchromatischer Reinigung
  • Die Gelpermeationschromatographie, eine universelle Reinigungsmethode in der Analytik von Pflanzenschutzmitteln
  • Untersuchungen zur Messung und Bewertung von Rückständen des Ektoparasitenbekämpfungsmittels Phoxim in Milch
  • Methode zur Aufarbeitung von Lebensmitteln und Futtermitteln pflanzlicher und tierischer Herkunft für die
  • Multirückstandsbestimmung lipoid- und wasserlöslicher Pflanzenbehandlungsmittel
  • Untersuchungen zur Gelchromatograpie (GPC) als Reinigungsverfahren in der Rückstandsanalytik von Tierarzneimitteln
  • Eine schnelle Methode zur Bestimmung des Ebergeruchsteroids Androstenon
  • Analysenverfahren zur Bestimmung von polychlorierten Dibenzodioxinen und Dibenzofuranen in Frauenmilch
  • Untersuchungen zum Vorkommen von Moschus-Xylol in Fischen
  • GPC-clean up von fetthaltigen Matrizes in der Rückstandsanalytik unter Verwendung von OPTIMA-Säulen
  • Entwicklung einer Methode zur Bestimmung von Nitromoschusverbindungen im Hausstaub

Kontakt

Zentrale

ANTEC GmbH
Analysen- und Prozesstechnik
Hauptstraße 4
82404 Sindelsdorf

Telefon: +49 (0) 8856 9910
Telefax: +49 (0) 8856 9891

E-Mail: kontakt@antec.de

Servicebüro

ANTEC GmbH
Servicebüro

Telefon: +49 (0) 89 72069268
Telefax: +49 (0) 89 72625045

E-Mail: service@antec.de